Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex

نویسندگان

  • M. Peyro
  • M. Soheilypour
  • B.L. Lee
  • M.R.K. Mofrad
چکیده

The nuclear pore complex (NPC) is the portal for bidirectional transportation of cargos between the nucleus and the cytoplasm. While most of the structural elements of the NPC, i.e. nucleoporins (Nups), are well characterized, the exact transport mechanism is still under much debate. Many of the functional Nups are rich in phenylalanine-glycine (FG) repeats and are believed to play the key role in nucleocytoplasmic transport. We present a bioinformatics study conducted on more than a thousand FG Nups across 252 species. Our results reveal the regulatory role of polar residues and specific sequences of charged residues, named 'like charge regions' (LCRs), in the formation of the FG network at the center of the NPC. Positively charged LCRs prepare the environment for negatively charged cargo complexes and regulate the size of the FG network. The low number density of charged residues in these regions prevents FG domains from forming a relaxed coil structure. Our results highlight the significant role of polar interactions in FG network formation at the center of the NPC and demonstrate that the specific localization of LCRs, FG motifs, charged, and polar residues regulate the formation of the FG network at the center of the NPC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleoporin's Like Charge Regions Are Major Regulators of FG Coverage and Dynamics Inside the Nuclear Pore Complex

Nucleocytoplasmic transport has been the subject of a large body of research in the past few decades. Recently, the focus of investigations in this field has shifted from studies of the overall function of the nuclear pore complex (NPC) to the examination of the role of different domains of phenylalanine-glycine nucleoporin (FG Nup) sequences on the NPC function. In our recent bioinformatics st...

متن کامل

Rapid Evolution Exposes the Boundaries of Domain Structure and Function in Natively Unfolded FG Nucleoporins*□S

Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain o...

متن کامل

The nuclear pore complex--structure and function at a glance.

Nuclear pore complexes (NPCs) are indispensable for cell function and are at the center of several human diseases. NPCs provide access to the nucleus and regulate the transport of proteins and RNA across the nuclear envelope. They are aqueous channels generated from a complex network of evolutionarily conserved proteins known as nucleporins. In this Cell Science at a Glance article and the acco...

متن کامل

Physical Motif Clustering within Intrinsically Disordered Nucleoporin Sequences Reveals Universal Functional Features

Bioinformatics of disordered proteins is especially challenging given high mutation rates for homologous proteins and that functionality may not be strongly related to sequence. Here we have performed a novel bioinformatic analysis, based on the spatial clustering of physically relevant features such as binding motifs and charges within disordered proteins, on thousands of Nuclear Pore Complex ...

متن کامل

Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins.

Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015